Benha University Faculty of Engineering (Shoubra) Electronics and Communications Engineering

ECE 211 Electrical and Electronic Measurements (2020-2021)

Lecture 6&7: Analog Electronic Voltmeters and Digital Voltmeters (DVM)

Dr. Islam Mansour

Electronics Voltmeter Outline:

- 1. Introduction.
- 2. Transistor Voltmeter Circuits.

3. Operational Amplifier Voltmeter Circuits.

4. AC Electronic Voltmeters.

5. Multimeter Probes.

Introduction:

- The electromechanical instruments have some limitations: as having low resistance (loading effect) and cannot measure very low voltages.
- The low input voltages need to be amplified to measurable levels and electronic circuits are required to offer high input resistance.
- Electronic circuits voltmeters with transistors, operational amplifiers (or op-amp) can be used to amplify small voltage and provide high input resistance.
- These analog circuits include:
 - 1. Emitter-Follower Voltmeter.
 - 2. FET-input Voltmeter.

Transistor Voltmeter Circuits.

Emitter-Follower Voltmeter:

A BJT emitter follower is used where the PMMC and R_s are connected to the Emitter.

The voltage to be measured, that is, E, is connected to the base of the transistor.

The base current, I_b is:

$$I_b = \frac{I_m}{\beta}, \qquad \beta : (\text{Transistor gain})$$

The input resistance, R_i is:

$$R_{in} \approx \frac{E}{I_b}$$

which is **much larger** than $R_s + R_m$ since I_b is small.

Figure 5-1 Emitter-follower voltmeter. The emitter follower offers a high input resistance to a measured voltage, and a low output resistance to a deflection meter. The base-emitter voltage drop (V_{BE}) introduces an error in the measurement.

Emitter-Follower Voltmeter (Cont.):

Example 1:

A simple emitter-follower voltmeter with: Vcc = 12 V, Rm = $2k\Omega$, 1 mA FSD meter current, and current gain = 50. Determine : (a) Appropriate multiplier resistance that can give FSD 5 V.

(b) Input resistance

Solu:
(a)

$$R_s = \frac{V_E}{I_m} - R_m = \frac{E - V_{BE}}{I_m} - R_m = \frac{5 - 0.7}{1 \ mA} - 2 = 2.3 \ k\Omega$$

(b) $R_{in} = \frac{E}{I_b} = \beta \cdot \frac{E}{I_m} = 50 \cdot \frac{5}{1 \ mA} = 250 \ k\Omega$

Example 2:

(a)

. . .

The simple emitter-follower voltmeter circuit in Figure 4-1 has $V_{CC} = 20$ V, $R_s + R_m =$ 9.3 k Ω , $I_m = 1$ mA at full scale, and transistor $h_{EE} = 100$. (a) Calculate the meter current when E = 10 V,

(b) Determine the voltmeter input resistance with and without the transistor.

Solution

1.10

30 Å

11

2.1

 $V_E = E - V_{B1} = 10 V - 0.7 V$ = 9.3 V $l_m = \frac{V_E}{R_1 + R_m} \approx \frac{9.3 \text{ V}}{9.3 \text{ k}\Omega}$ = 1 mA $I_B \approx \frac{I_m}{h_{FE}} \approx \frac{1 \text{ mA}}{100}$ (b) With the transistor. = 10 µA $R_i \approx \frac{E}{I_B} \approx \frac{10 \text{ V}}{10 \, \mu \text{A}}$ $= 1 M\Omega$

Without the transistor,

 $R_i = R_i + R_m = 9.3 \text{ k}\Omega$

Emitter-Follower Voltmeter (Cont.) :

- To reduce the drop VBE, a one more emitter-follower and a voltage divider are used with a ± 12 V dual polarity supply is connected.
- When E = 0, the resistance R5 is adjusted to make VE2 = 0.7 and Vm = 0.
- When E is exist, the PMMC voltage is:

$$V_m = E - 0.7 - (-0.7) = E$$

Figure 5-2 Practical emitter-follower voltmeter circuit using a second transistor (Q_2) and a voltage divider (R_4 , R_5 , and R_6) to eliminate the V_{BE} error introduced by Q_1 .

• So, the voltage drop is removed.

Example 3:

An emitter-follower voltmeter circuit such as that in Figure 4-2 has $R_2 = R_3 = 3.9 \text{ k}\Omega$ and $V_{CC} = \pm 12 \text{ V}$.

- (a) Determine I_2 and I_3 when E = 0 V.
- (b) Calculate the meter circuit voltage when E = 1 V and when E = 0.5 V.

Solution

(b) When E = I V,

$$V_{E1} = E - V_{BE} = 1 \text{ V} - 0.7 \text{ V}$$

= 0.3 V
$$V_{E2} = V_{B2} - V_{BE} = 0 \text{ V} - 0.7 \text{ V}$$

= -0.7 V
$$V = V_{E1} - V_{E2} = 0.3 \text{ V} - (-0.7 \text{ V})$$

= 1 V

When E = 0.5 V,

$$V_{E1} = E - V_{BE} = 0.5 \text{ V} - 0.7 \text{ V}$$

= -0.2 V
$$V_{E2} = V_{B2} - V_{BE} = 0 \text{ V} - 0.7 \text{ V}$$

= -0.7 V
$$V = V_{E1} - V_{E2} = -0.2 \text{ V} - (-0.7 \text{ V})$$

= 0.5 V

FET-input Voltmeter:

Advantage:

The Field Effect Transistor (FET) provide extremely high input resistance.

Figure 5-4 A voltmeter input attenuator is simply a voltage divider that accurately divides the voltage to be measured. The FET input stage (Q_3) gives the emitter follower a very high input resistance.

Example 4:

Determine the meter reading for the circuit in Figure 4-4 when E = 7.5 V and the meter is set to its 10 V range. The FET gate-source voltage is -5 V, $V_p = +5$ V, $R_s + R_m = 1$ k Ω , and $I_m = 1$ mA at full scale.

On the 10 V range: Solution $E_G = E \frac{R_c + R_d}{R_c + R_c + R_c}$ FET Input Emitter-follower attenuator voltmeter stage $= 7.5 \text{ V} \times \frac{60 \text{ k}\Omega + 40 \text{ k}\Omega}{800 \text{ k}\Omega + 100 \text{ k}\Omega + 60 \text{ k}\Omega + 40 \text{ k}\Omega}$ = 0.75 V 800 k *≤ R*. iV 5V 6 $V_{\rm s} = E_{\rm c} - V_{\rm cs} = 0.75 \, \rm V - (-5 \, \rm V)$ 10V Q_1 V_{cc} = 5.75 V $100 \text{ k} \ge R_h$ V_{GS} 25V EG $V_{E1} = V_S - V_{BE} = 5.75 \text{ V} - 0.7 \text{ V} = 5.05 \text{ V}$ R_{s} $60 \text{ k} \quad \mathbf{\hat{\leq}} R_c$ I_{S} $V_{F2} = V_P - V_{HE} = 5 \text{ V} - 0.7 \text{ V}$ Δ R, + R_t = 4.3 Vウ ٠ V_{EE} 40 k $\leq R_d$ $V = V_{E1} - V_{E2} = 5.05 \text{ V} - 4.3 \text{ V}$ $= 0.75 V = E_G$ $l_m = \frac{V}{R_s + R_m} = \frac{0.75 \text{ V}}{1 \text{ k}\Omega}$

= 0.75 mA (75% of full scale)

On the 10 V range, full scale represents 10 V, and 75% of full scale would be 12 read as 7.5 V.

Operational Amplifier Voltmeter Circuits.

Operational Amplifier

The Op. Amp IC is a perfect choice to be used in the electronic voltmeters

 Ideal Op. Amp has the formation of the second second)	+Vcc
► Rin = ∞		
$> \mathbf{R}_0 = 0$	(Non-inverting i/p) V1	+ 741Vo
$> \mathbf{A}_{\mathbf{v}} = \infty$	(Inverting terminal) V2	_ Output
Av is the open loop voltage gain	· · · · · · · · · · · · · · · · · · ·	-Vee

Operational Amplifier Voltmeter

- The voltage follower has a much higher input resistance and lower output resistance than the emitter follower.
- The input voltage is applied to the op-amp noninverting input terminal, and the feedback from the output goes to the inverting input.
- The attenuator selects the voltmeter range.

IC Operational Amplifier

Non-Inverting Amplifier $P_{un} = P_{un} = P_{$

An op-amp noninverting amplifier voltmeter is very easily designed. Current I_4 through R_3 and R_4 is first selected very much larger than the op-amp input bias current (I_B) . Then the resistors are calculated as

$$R_3 = \frac{E}{I_4}$$
 and $R_4 = \frac{V_o - E}{I_4}$

Example 5:

An op-amp voltmeter circuit as in Figure 4-7 is required to measure a maximum input of 20 mV. The op-amp input current is 0.2 μ A, and the meter circuit has $I_m = 100 \mu$ A FSD and $R_m = 10 k\Omega$. Determine suitable resistance values for R_3 and R_4 .

Solution

Select At full scale, and

$$I_{4} >> I_{B}$$

$$I_{4} = 1000 \times I_{B} = 1000 \times 0.2 \,\mu\text{A}$$

$$= 0.2 \,\text{mA}$$

$$I_{m} = 100 \,\mu\text{A}$$

$$V_{out} = I_{m} \times R_{m} = 100 \,\mu\text{A} \times 10 \,\text{k}\Omega$$

$$= 1 \,\text{V}$$

$$R_{3} = \frac{E}{I_{4}} = \frac{20 \,\text{mV}}{0.2 \,\text{mA}}$$

$$= 100 \,\Omega$$

$$R_{4} = \frac{V_{o} - E}{I_{4}} = \frac{1 \,\text{V} - 20 \,\text{mV}}{0.2 \,\text{mA}}$$

$$= 4.9 \,\text{k}\Omega$$

Voltage-to-current converter Voltmeter

Figure 5-8 Voltmeter circuit using an opamp voltage-to-current converter. The meter current is E/R_3 .

AC Electronic Voltmeters

AC Electronic Voltmeters

- D1 is half-wave rectifier
- The coupling capacitor C1 to block unwanted dc voltage.
- The voltage drop (VF) across the rectifier is a source of error in the circuit.
- Also, the rectifier voltage drop is not always exactly 0.7 V, as usually assumed for a silicon diode and it varies with temperature change.

AC Electronic Voltmeters (Cont.)

 To avoid these errors, the voltage follower feedback connection to the inverting terminal is taken from the cathode of rectifier D1 instead of from the amplifier output.

AC Electronic Voltmeters (Cont.)

• The input is amplified by factor

$$A_{\nu} = (R_2 + R_3)/R_3.$$

Figure 5-13 Ac voltmeter circuits using an op-amp noninverting amplifier together with precision half-wave rectification. Low-level voltages are amplified before measurement.

Op-amp Half-bridge Rectifier Voltmeter

Figure 5-15 Ac electronic voltmeter using half-bridge full-wave rectification.

Voltmeter & Shunt

Figure 5-16 An electronic voltmeter can be used for current measurement by measuring the voltage drop across a shunt $(R_{\rm S})$. The instrument scale is calibrated to indicate current.

Multimeter Probes

Multimeter Probes

- There are many probes and adapters available to extend multimeter ranges.
 - 1. High-Voltage Probe
 - 2. High-Current Probes
 - 3. RF probe allows the meter to measure the voltage level of a waveform with a frequency upper its cutoff frequency.

Figure 5-20 Peak detector circuit consisting of a clamper circuit and a low-pass filter. The peak voltage of a high-frequency waveform is converted to a dc quantity that can be measured on a dc voltmeter.

DVM Outline:

- 1. Introduction.
- 2. Ramp Type Digital Voltmeters.
- 3. Dual Slope Digital Voltmeters.
- 4. DVM Range Changing.
- 5. Digital Voltmeter Accuracy.
- 6. Types of Digital Multi-meters.

Introduction:

- Two types will be covered: **Ramp-type** and **Dual slope Integrator** DVMs.
- Digital voltmeters (DVM) are essentially analog-to-digital converters with digital displays to indicate the measured voltage.

Digital Voltmeter Basic Block Diagram

Seven-Segment LED Display

There are two types: 1. Common Anode 2. Common Cathode

Figure 6-10 Light-emitting diodes arranged in a *seven-segment* format can display any numeral from 0 to 9.

2. Ramp Type Digital Voltmeters

Ramp Type Digital Voltmeters:

- A ramp signal is generated.
- The comparator compares the input Vi with the ramp VR.

 $V_1 = \left\{ \begin{array}{ll} 1, & \text{if } V_i \geq V_r \\ 0, & \text{if } V_i < V_r \end{array} \right\}$

- If the comparator output V1 is high, the counting circuit will count the pulses from clock generator.
- If the output V₁ is low, the counting will stop.
- $N_{pulses} \propto V_i$.
- The value of Vi will be displayed

(a) Ramp-generator-type DVM

Ramp Type Digital Voltmeters (Cont.):

Ramp Type Digital Voltmeters (Cont.):

The use of the Latch:

- 1. The latch isolates the display from the counting circuit during the t1.
- 2. It will connect the display to the counting circuit at the rising edge of the comparator output.

End of Lecture

Best Wishes